We know more about epidemics than ever before. Now what?

The first reports started coming in by mobile phone. Concerned users in Syria opened up the website of HumanitarianTracker.org and filled out a basic web form. Someone was sick; it looked like polio. Taha Kass-Hout, a co-founder of the platform, recalls how the spotty initial data trickled in. Concerned, he reached out to the Syrian opposition’s aid body — the Assistance Coordination Unit. Soon, they were sending him nightly spreadsheets of reported cases. He and his team manually pulled the figures and updated Humanitarian Tracker’s open source database. Polio, a nearly eradicated disease, had returned to Syria.

Within months, it was clear that crowdsourced reports such as this had noticed something that traditional epidemic surveillance systems had missed — or at least vastly underestimated. The World Health Organization reported 36 cases of polio in 2013-14. Researchers writing in the Annals of Global Health found 46 more using nontraditional surveillance methods, including data collected by Humanitarian Tracker.

The key to spotting the outbreak was what Kass-Hout calls the data “mosaic effect.” WHO polio surveillance relies heavily on government data from confirmed cases of a disease. But those monitoring networks have blind spots: where health systems have collapsed, where states are weak, where medical testing centers are lacking or where politics gets in the way.

This article is free to read - just register or sign in

Access news, newsletters, events and more.

Join us